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CONVECTIVE DIFFUSION IN A PERIODIC ARRAY OF SPHERES
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It is shown that in flow past a system of spheres of radius a situated at
the nodes of a cubic lattice with the period b in the direction of one

of the principal translations of the lattice under the condition (a/b) *
- DA (P is the Péclet number, P > 1), the concentration of dis-
solved material absorbed by the sphere surfaces diminishes logarithmi~-
cally at distances large compared with b, but small compared with

L = Pb%/4ma. At distances considerably larger than L, the decrease is
described by an exponential law which coincides with the law of con-
centration decrease at distances much larger than b in the case of a
spatially homogeneous diswribution of the spheres. We consider the

flow of an incompressible fluid with the velocity U past a system of
spheres of radius ¢. We assume that the Reynolds number R = Ua /v
(where v, the kinematic viscosity coefficient, is much larger than
unity). Dissolved in the fluid is a material of concentration ¢ which

is absorbed by the sphere surfaces. The diffusion coefficient D is as-
sumed to be sufficiently small for the Péclet number P = Ua/D to be
much larger than unity. The spheres are situated at the nodes of a
cubic latrice with the period b, As will be shown below, it is necessary
that P(a/b)3 « 1. Under these assumptions the concentration varies in
a thin (of the order aP™*/%) diffusion layer near the surface of each
sphere. A diffusion wake is formed behind each sphere. The transverse
dimensions of this wake for a sufficiently widely spaced lattice (aPl/ P
<«'b) exceed the effective thickness of the diffusion boundary layer,
which enables us to reduce the problem of concentration absorption on
the surface of the system of spheres to the problem considered by Levich
[1] concerning the convective diffusion of a material of constant con«
stant concentration flowing past a single sphere.

Hasimoto [2] considers the solution of the Stokes equation describing
the motion of a viscous fluid past an array of spheres situated at the
nodes of a cubic lattice, However, he does not give an expression for
the velocity field applicable near the surface of some single sphere
which is necessary to the solution of the diffusion problem,

In the method of Lamb [3] (§336) and Burgers [4], in dealing with the
flow of a viscous stream past a single sphere, one considers the equation
of motion in space, including the interior of the sphere, and not just
the solution of the equation in the space outside the sphere with bound-
ary conditions at the sphere surface. At the center of the sphere one
places a concentrated force and a system of multipoles whose magnitude
is chosen in such a way as to ensure fulfillment of the required boundary
conditions,

This idea of introducing an effective potential is used in [2] to find the
velocity field of a fluid flowing past an array of spheres. We propose a

rreatment of the effective potential method somewhat different from
that of [2].

§1. We begin with the equation

AV = grad p+ (Fy+ 2?F1A + .. ) D18 (r —rp),(1.1)

divv=20 (r,=nra-t+mb-lle), (1.2)
Here v is the velocity of the fluid at the point r;

1 is the dynamic viscosity coefficient; p is the pres-

sure; ry is the radius-vector of the n-th node of the

lattice (n, m, =0, 1, 2, ...). The density of the

force exerted by the spheres on the fluid will be sought

in the form of a series containing the 6-function and

its derivatives with some constant coefficients F(, Fy,
etc. Introduction of these terms enables us to find a
combination of particular periodic solutions which
satisfies the condition of vanishing of the velocity at
the sphere surfaces.

We shall then show that consideration of the first
two terms of the series with the coefficients F; and
Fy enables us to pass to the Stokes solution for flow
past a single sphere as a/b — 0, The smallness of the
rejected terms means that the highest-order deriva~
tives of the correction of the velocity field produced
by all the spheres are small as compared with the
corresponding derivatives of the correction of the
velocity field produced by the nearest sphere, except
in the neighborhood of the sphere around which the
flow is being considered. The method is therefore
applicable only if a/b « 1,

Assuming summation over the recurring Greek-
letter indices, we can write the required solution
(as in [2]) in the form
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where v& are the components of the velocity of the
fluid, and v{ are their limiting values for a/b — 0,
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Here k is the vector of the reciprocal lattice, which
is related to the vectors of the (original) lattice by the
conditions (k-a) = n, (k-b) = m, (k-¢) = L

We know (e.g., see [2]) the expansion of the lattice
sums S; and S, in the neighborhood of small r to within
terms of order (r/b)®,
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Substituting expansion (1.5) into Eq. (1.3) and making
use of the boundary condition v% = 0 for r = @, we ob-
tain
8apavy* = F,* [n*n® +
+ 845 (1 — 3.76 a/b)] — F1? (3n2n® — 8,5)

(¥ ==r*/r).

(1.6)

Equating the coefficients of the equal spherical
harmonics, we obtain

Fy* = 6apal®, F* = apale,
— 2;01
U= r—38a7s - .7
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Thus, in the region r¥ « b?, i.e., in the neighbor-
hood of the isolated sphere, the velocity field of the
fluid flowing past the system of spheres is given by

2% = U [8,5 — 3 (nn? - 8,5) a ) 4r -+

+ (3n%nF — Byg) 0P/ 4r9] . (1.8)

As expected, the velocity field near the surface of
the sphere is similar to the velocity field of a viscous
stream flowing past a single sphere, except that the
velocity U of the oncoming stream differs from v,

If a® < b%, then there exists a region where r > a
and r® « b?® and where expression (1.8) still holds. For
this reason the velocity of the stream can be consider-
ed constant and equal to U.

§2, Before investigating convective diffusion in the
stream flowing past an array of spheres, let us con-
sider the problem of convective diffusion at the surface
of a single sphere in the way of a stream of velocity U.

The equation of convective diffusion is

vye = DAc . 2.1)

In spherical coordinates the velocity components
Vy, Vg can be expressed in terms of the stream func-
tion ¢,

1 oy 1 8y

Vp = ——T— = 33 = e e
r risin 6 46 ° Yo rsin® or

=—1,Usin®0(rt —3fyar + Yo a®/ 1) . (2.2)

Following Levich [1], we retain only the most essen-
tial terms in the equation for the diffusion boundary
layer,

or Yy de %
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2.2)
We make use of the von Mises transformations to con-
vert from the variables r, 6 to the variables ¢, 0,
where

Y= —3,U(r— a)?sin®0. (2.4)

Repeating the analysis of [1], we obtain the equation

% dc
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with the following boundary conditions:
at the surface of the sphere,

c(0,8) =0,  t==0;

2.8)
in the region outside the boundary layer,

lim C(g. t) = Cuj

5 >0

2.7)

for the concentration distribution in the stream
entering the neighborhood of the run-on point,

E<+0.

Equation (2.5) with boundary conditions (2.6)—(2.8)
has the solution obtained by Levich [1],

¢ (&, 0) = ¢, 2.8)

1
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The range of applicability of Eq. (2.2), and there-
fore of solution (2.9), is defined by the condition
dc | 0r > ¢, / R, which is fulfilled, as we see directly
from Eqs. (2.9), if 7 — 6 >» p~1/3,

The principal terms of convective diffusion equation
2.1) in the domain 7 — 6 > pY? satisfy the following
equation (whose form is that of the heat conduction equa-
tion,

de 9% 9%
U =D{5+ o)

(2.10)
at large distances from the surface of the sphere

(r > a) (in Cartesian coordinates with the x-axis di-
rected along the oncoming stream).

The assumption of a constant velocity U can be
justified by the fact that the characteristic distance
along the x-axis along which the concentration varies
is (as will be seen from our solution) on the order of
aP/3, i.e., considerably larger than the radius of the
sphere (the region in which the stream velocity differs
markedly from U).

The second assumption made in deriving Eq. (2.11)
has to do with the condition |U dc / 8z | > D |d% / d2%|,
whose fulfillment for a monotonically varying concen-
tration follows from the condition P > 1.

If we had a boundary condition for Eq. {2.10), i.e.,
for ¢(0, y, z), we could write the solution of this equa-
tion as

c(@y )=\c 1, )G, y—y., 2—1)dydz,

Uy 15
—41;”;——]. @.11)

Gz, y,2)= Z%;exp{——
The function ¢(0, y*, z*') can be determined as fol-
lows. Let us consider a conical surface with the fixed
angle & =g, =~ P-» The concentration on this surface
is given by Levich's formula (2.9) if we substitute in
it the value 8 = 7 — g, for t. To within terms of order
1/P we have t = t, = Y/, aDa? (3U)".. Now, assuming
that the concentration distribution on the conical sur-
face is also defined by the angle ¢,, we let P go to in-
finity. Convective diffusion equation (2.1) throughout
the domain, including the conical surface, then becomes
the equation of convective transfer
dc P dc 0

R (2.12)
According to Eq. (2.12), the concentration distri-
bution specified on the surface of the cone is carried
inside along the streamlines. Thus, for P — « the
concentration distribution inside the conical surface
is given by expression (2.9) with t replaced by tg,
. . 1 £3
c® = 1o (5 5) 2.13)
Expression (2,11) for P — « must tend to the same
expression sufficiently far away from the surface of
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the sphere (x > a)., This implies that

1 i")

c(O,y,z) F(l/)T(S’ 91,

(52 - _2_ (4 7_2)) A (2.14)

For sufficiently large x, expression (2.11) with
boundary condition (2.14) can be written as
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The second term in braces contributes nothing to
the integral because of the oddness of the integrand.
The contribution of the third term is small if x >
> ylU/D. But the quantity y4 ~ Ot)/°0-1/2, It is
therefore necessary that = > (9¢,): /D =~ aP" in
order for the concentration distribution in the diffusion
wake to coincide with the concentration distribution due
to the point source

c(@,y,3) (9r0)"s Uyt
- =1— PN UAYIE p[“'—””’“’“wx ] (2.16)

§3. Now let us consider convective diffusion in a
stream flowing past an array of spheres situated at the
nodes of a cubic lattice with the period b > aP¥3. Out-
side the boundary diffusion layers the concentration
distribution is determined by the diffusion wakes of all
the spheres having (in accordance with §2) the form of
diffusion wakes due to point sources. Due to the peri-~
odicity of the concentration distribution in the plane
perpendicular to the stream (x = const), it is sufficient
to consider the stream in the neighborhood of the sphere
kb, 0, 0),

k-1
Gt T a e S ens[ - Lagan)
n=0
&) =g—nb, Yo =y—mb, z =z—1b. (3.1)

The constant A, can be determined from the condi-
tion that the difference between the fluxes of the dis~
solved material through the planes x = x; and x = x,,
of which one is taken in front of, and the other behind,
the k-th sphere (@ « kb — %y < b, a <« x; — kb « b)
is equal to the diffusion flux on the spheres lying inside
the layer just defined. This implies that

fes]
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Iy = eyl 4y — 2npdp = 4nDesady, (3.2)
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where Ik is the total diffusion flux on the surface of
the k-th sphere,

We can compute I by considering the equation of
convective diffusion in the boundary layer near the
surface of the k-th sphere (2.3).

The appropriate boundary conditions can be obtained
from Eq. (3.1).

The concentration distribution near the surface of
the k-th sphere outside the diffusion boundary layer is
produced by the diffusion wakes of all the spheres in
the system situated to the left of the plane x = bk. The
principal role in the sum is played by the term associ-
ated with the (k — 1)-th sphere. But since the lattice
period b is much larger than apl/ 3, the diffusion wake
of the (k ~ 1)-th sphere has a transverse width consid~
erably larger than ap~1/3, i,e., larger than the effec-
tive thickness of the diffusion boundary layer. The con-
centration changes markedly in the longitudinal direc-
tion in the diffusion wake at distance aP!/3 » a. I view
of all these considerations, the concentration of the
stream flowing past the k-th sphere in the region out-
side the diffusion boundary layer can be considered
equal to the concentration which would be produced by
all the diffusion wakes at the k-th node of the lattice.
Hence,

Iim c(&, t) = ¢, c(E 0) =g, ££0,
Ana i Ub(m2 4 1?)
2  (F )b 4 }-‘ eXp[ D (k —) ] @.3)

We have therefore reduced the problem to that of
Levich [1]. The concentration distribution in the diffu~
sion boundary layer is defined by formula (2.9) with c,
replaced by ¢j.. The diffusion flux density on the sur-
face of the k~th sphere is

1=D(35)p =

The total diffusion flux on the surface of the k-th
sphere is

D (3U)":

3\ .
W <7> L‘kSlne . (3«4)

I = 2na? g sin0.d = 4xDbey
0
(d(J )1/“ 44 VO = 4 pr
— sy (£ De) =065 8P (3.5)
From relations (3.2) and (3.5) we infer that
Ay = Abey, /[ acy . (3.6)

We therefore have the following recurrence relation
for the concentration in the neighborhood of the k~th
lattice node:

Ub (m? - 1)
(m - I. (307)

‘ E\pIMTU_(A_.:_

m, l

Making use of the theta function d3(z | 7) defined in
(51,

el
2 plremt

=00

6:(0]7) = 3.8)

we can rewrite expression (3.7) as

k-1
Cp == Cy~— 2
=

Ub?

oot (L= ) - (3:9)

k—n
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b(k—n))

For k > 1 Eq. (3.9) is equivalent to the integral
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equation

o). (3.10)

*— X
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e(@=co— § 225 o2(0
0

In the range x <« L, neglecting terms of order
e~TL/X and assuming that A « 1, we obtain the follow-
ing solution of Eq. (3.10): ‘

(z) = c.)/(1+ Aln %). (3.11)

If x > L, then, using the imaginary Jacobi trans-

form

82(0]7) = (— it)y:95 (0 ’ - (3.12)

and neglecting terms of order e™™, we can replace
Eq. (3.10) by the simpler equation

x-L x-b
¢(2) = co— 1 S e(@)da' — | 20 42, (3.13)

0 x—L

whose solution is

eX (x-L) /L .

clz) Ly

(3.14)

Thus, the concentration of the oncoming stream in the neighborhood
of the lattice nodes varies logarithmically for X « L and decreases ex~
ponentially for x > L,

As we see from Eq. (3.1), at distances x ~ L the effective width of
the diffusion wake is comparable with the lattice period b. The con-
centration distribution in the range x « L is therefore close to that
which arises in flow past a single chain in an infinite medium, The
effect of neighboring chains is not yet significant. For x > L the solu~
tion of the problem obtained in the first approximation in the small

parameter X becomes the solution for spheres chaotically distributed
in space. In fact, the equation for the average concentration in a re~
gion considerably larger than b® is described by the equation of con-
vective transfer with absorption (for P > 1 the diffusion flux for the
average concentration is negligibly small as compared with the con-
vective flux),

Lde/dz = — o (3.15)

whose solution for x > L clearly coincides with Eq. (3.14) to within
a constant factor.

However, the range of applicability of this solution in the case of
chaotically distributed spheres is x > b, If the spheres form chains,
then it is only applicable for x > L. In the range b « x < L the
character of concentration variation in the neighborhood of spheres
homogeneously distributed in space and of spheres arranged in chains
differs qualitatively.

The authors are grateful to V. G. Levich and V. S, Krylov for
their comments.
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